G(x)=2x^2+7x-10

Simple and best practice solution for G(x)=2x^2+7x-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for G(x)=2x^2+7x-10 equation:



(G)=2G^2+7G-10
We move all terms to the left:
(G)-(2G^2+7G-10)=0
We get rid of parentheses
-2G^2+G-7G+10=0
We add all the numbers together, and all the variables
-2G^2-6G+10=0
a = -2; b = -6; c = +10;
Δ = b2-4ac
Δ = -62-4·(-2)·10
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{29}}{2*-2}=\frac{6-2\sqrt{29}}{-4} $
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{29}}{2*-2}=\frac{6+2\sqrt{29}}{-4} $

See similar equations:

| 23=x-32/1.8 | | (10x+4)=(9x+6) | | (x+2x)^2-5=0 | | (10x+4)=(9x-6) | | 2x-88=22 | | f(2)=9+1 | | 260=l(1-0.1) | | 6x-2x^2=x^2+1x | | -x+15=26 | | (x)=7x2–9x+123 | | 63​ =c4 | | 5x(10-18)=19x(16+17) | | 6z+6=7z+5=180 | | 36x+2=35+5 | | 5x+15=4x+7 | | 42x+12=36x+3 | | 71+x+x+131=180 | | F(5)=-10x+4 | | 3x²+8x+5=0 | | (8x+12)=(4x+20) | | 2z-11=1 | | F(-8)=-10x+4 | | 24/2n=8/12 | | p=77 | | 3x-8/2-1=x-4/8 | | q+3=17 | | (6n-4)=(n+12) | | (6n-6)=(n+12) | | 80y^2-120y+43=0 | | 8=2r+6 | | 3x+18-2x+4=10 | | 1/7w-2=0 |

Equations solver categories